
Fast reboots using kexec

Fast reboots using kexec

• HP servers take a long time to boot
• If only we could reboot but skip the BIOS
• We can, using kexec

Fast reboots using kexec

kexec replaces the running Linux kernel by
booting directly into a new one

• Kernel support was already enabled
• Userspace tool added to all targets
• Init system updated to support kexec reboots
• p8tools updated to support kexec reboots

Fast reboots using kexec

Prepare a kexec kernel. On older images, this will simply fail.
extlinux = unit.shell.extlinux
image = extlinux['default']
cmdline = extlinux['append']
cmdline += ' BOOT_IMAGE=' + image
image = '/boot' + image

unit.shell('kexec -l %s --append=%s', image, cmdline)

Run reboot command. On newer images, this will reboot using
kexec if the load succeeded.
unit.shell('reboot')

Fast reboots using kexec

Fast reboots using kexec

G6 NMS

G5 CSR

G6 CSR

0 50 100 150 200 250 300 350 400 450

After
Before

Annotated log messages (a proposal)

Annotated log messages (a proposal)

• We’ll distinguish between two types of log
messages.

• Non-annotated log messages
– This is currently all of our log messages.
– In the future, should go only into the debug log.
– Print to stderr without priority prefix or other metadata.

Annotated log messages (a proposal)

• Annotated log messages:
TU-17 obcu-tu-comm[5617]: [W1002] Gateway
operation def failed; OCN A interface not found

• Go in the regular syslog file.
• The mandatory log point code specifies:

– Severity (Critical, Error, Warning, Notice, Info).
– Unique serial number for reference.

Annotated log messages (a proposal)

• A given serial number not only identifies
the log message, but also the specific
point in the code (hence “log point”)
producing the log message.

• If two pieces of code produce the same
log message, it’ll still be different numbers.

Annotated log messages (a proposal)

• Code wishing to emit annotated log points
must use a common utility function/macro.

• This enables automated extraction of log
point metadata from the source code.

Annotated log messages (a proposal)

• In C/C++:
#include "airlink/logging.h"

if (alive_telegram_timeout <= alive_telegram_interval) {
 LOGPOINT(W1001, "Alive telegram timeout (%d ms) should"
 " be larger than send interval (%d ms)",
 alive_telegram_timeout, alive_telegram_interval);
 /*
 Consequence: TU will disregard alive telegrams from other TUs, causing
 repeated failover events and impacting redundancy.

 Mitigation: Ensure that timeout is larger than the broadcast interval,
 or use the default values for the vars.
 */
}

Annotated log messages (a proposal)

• In Bash (and POSIX sh):
Optional (LOGPOINT is available both as a binary and as a shell function):
. /run/bin/utilities.sh

if ["$alive_telegram_timeout" -le "$alive_telegram_interval"]; then
 LOGPOINT W1001 'Alive telegram timeout (%d ms) should be larger than send
interval (%d ms)' \
 "$alive_telegram_timeout" "$alive_telegram_interval"
 # Consequence: TU will disregard alive telegrams from other TUs, causing
 # repeated failover events and impacting redundancy.
 #
 # Mitigation: Ensure that timeout is larger than the broadcast interval,
 # or use the default values for the vars.
fi

Annotated log messages (a proposal)

• In Python:
from framework.logging import LOGPOINT

if alive_telegram_timeout <= alive_telegram_interval:
 LOGPOINT('W1001', 'Alive telegram timeout (%d ms) should'
 'be larger than send interval (%d ms).',
 alive_telegram_timeout, alive_telegram_interval)
 """
 Consequence: TU will disregard alive telegrams from other TUs, causing
 repeated failover events and impacting redundancy.

 Mitigation: Ensure that timeout is larger than the broadcast interval,
 or use the default values for the vars.
 """

Annotated log messages (a proposal)

• LOGPOINT is the magic keyword
• printf formatting used everywhere

– for consistency and
– to enable extraction of the log message
– Sorry, C++ iostreams

• Long description goes into a comment just below
LOGPOINT

Annotated log messages (a proposal)

• Developer tools needed to:
– generate unused log point serials, ensuring

they don’t clash with other developers’
(uncommitted!) serial numbers

– extract log point metadata during build for the
end-user documentation

Annotated log messages (a proposal)

• End-user tools needed
to:
– view log message

documentation on the
units

	Fast reboots using kexec
	Fast reboots using kexec (2)
	Fast reboots using kexec (3)
	Fast reboots using kexec (4)
	Fast reboots using kexec (5)
	Fast reboots using kexec (6)
	Annotated log messages (a proposal)
	Annotated log messages (a proposal) (2)
	Annotated log messages (a proposal) (3)
	Annotated log messages (a proposal) (4)
	Annotated log messages (a proposal) (5)
	Annotated log messages (a proposal) (6)
	Annotated log messages (a proposal) (7)
	Annotated log messages (a proposal) (8)
	Annotated log messages (a proposal) (9)
	Annotated log messages (a proposal) (10)
	Annotated log messages (a proposal) (11)

