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Fast reboots using kexec

• HP servers take a long time to boot
• If only we could reboot but skip the BIOS
• We can, using kexec



Fast reboots using kexec

kexec replaces the running Linux kernel by 
booting directly into a new one

• Kernel support was already enabled
• Userspace tool added to all targets
• Init system updated to support kexec reboots
• p8tools updated to support kexec reboots
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# Prepare a kexec kernel. On older images, this will simply fail.
extlinux = unit.shell.extlinux
image = extlinux['default']
cmdline = extlinux['append']
cmdline += ' BOOT_IMAGE=' + image
image = '/boot' + image
 
unit.shell('kexec -l %s --append=%s', image, cmdline)
 
# Run reboot command. On newer images, this will reboot using
# kexec if the load succeeded.
unit.shell('reboot')
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• We’ll distinguish between two types of log 
messages.

• Non-annotated log messages
– This is currently all of our log messages.
– In the future, should go only into the debug log.
– Print to stderr without priority prefix or other metadata.
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• Annotated log messages:
TU-17 obcu-tu-comm[5617]: [W1002] Gateway 
operation def failed; OCN A interface not found

• Go in the regular syslog file.
• The mandatory log point code specifies:

– Severity (Critical, Error, Warning, Notice, Info).
– Unique serial number for reference.
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• A given serial number not only identifies 
the log message, but also the specific 
point in the code (hence “log point”) 
producing the log message.

• If two pieces of code produce the same 
log message, it’ll still be different numbers.
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• Code wishing to emit annotated log points 
must use a common utility function/macro.

• This enables automated extraction of log 
point metadata from the source code.
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• In C/C++:
#include "airlink/logging.h"

if (alive_telegram_timeout <= alive_telegram_interval) {
    LOGPOINT(W1001, "Alive telegram timeout (%d ms) should"
        " be larger than send interval (%d ms)",
        alive_telegram_timeout, alive_telegram_interval);
    /*
    Consequence: TU will disregard alive telegrams from other TUs, causing
    repeated failover events and impacting redundancy.

    Mitigation: Ensure that timeout is larger than the broadcast interval,
    or use the default values for the vars.
    */
}
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• In Bash (and POSIX sh):
# Optional (LOGPOINT is available both as a binary and as a shell function):
. /run/bin/utilities.sh

if [ "$alive_telegram_timeout" -le "$alive_telegram_interval" ]; then
    LOGPOINT W1001 'Alive telegram timeout (%d ms) should be larger than send 
interval (%d ms)' \
        "$alive_telegram_timeout" "$alive_telegram_interval"
    # Consequence: TU will disregard alive telegrams from other TUs, causing
    # repeated failover events and impacting redundancy.
    #
    # Mitigation: Ensure that timeout is larger than the broadcast interval,
    # or use the default values for the vars.
fi
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• In Python:
from framework.logging import LOGPOINT

if alive_telegram_timeout <= alive_telegram_interval:
    LOGPOINT('W1001', 'Alive telegram timeout (%d ms) should'
        'be larger than send interval (%d ms).',
        alive_telegram_timeout, alive_telegram_interval)
    """
    Consequence: TU will disregard alive telegrams from other TUs, causing
    repeated failover events and impacting redundancy.

    Mitigation: Ensure that timeout is larger than the broadcast interval,
    or use the default values for the vars.
    """
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• LOGPOINT is the magic keyword
• printf formatting used everywhere

– for consistency and
– to enable extraction of the log message
– Sorry, C++ iostreams

• Long description goes into a comment just below 
LOGPOINT



Annotated log messages (a proposal)

• Developer tools needed to:
– generate unused log point serials, ensuring 

they don’t clash with other developers’ 
(uncommitted!) serial numbers

– extract log point metadata during build for the 
end-user documentation



Annotated log messages (a proposal)

• End-user tools needed 
to:
– view log message 

documentation on the 
units
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